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METHOD FOR APPROXIMATING THE VACUUM MOTIONS OF SPINNING
SYMMETRICAL BODIES WITH NONCONSTANT SFIN RATES

By C. Winiiam MarTz

SUMMARY /¢ 7 %/

A method for approximating the vacwuwm motions
of spinning rigid symmetrical bodies with varying
spin rates and inertias has been completed.  The
analysis includes the effects of time varying thrust
misalinements, mass unbalance, and jet damping.
Results are given in the form of equations for space-
referenced Fuler angles, flight-path angles, body-
referenced  att’tude  rates, and  earth-referenced
vehicle-trajectory coordinates.  The method consists
of dividing the problem into intervals during which
the time-dependent variables are assumed constant
at their mean interval value. In order to check this
procedure, solutions for various interval sizes are
compared with solutions obtained with numerical
methods.  Although the method is somewhat lengthy
for accurate hand computation in anost cases, it is
readily programed for machine solutions.  Probably
more {mportant, the general solulions give inxight
into the separate effects of the variables and, in many
cases, can be quickly used to determine the approxi-
mate ranges of the variables required for the desired
solution to a given problem. In thix respect, equa-
tions for determining marimum wobble have been
derived for certain input conditions.

The method has been shown to compare closely
with the numerical solutions of two sample problems.
The sample problems also illustrated the relatively
large effect of pitch and yaw jet damping on body
motions.

INTRODUCTION

Vacuum motions of rotating bodies are becoming
more important with the fairly recent ability to
place objects in motion beyond the atmosphere.
Machine computer programs for calculating these
type motions have been completed and used

success(ully for some time. However, not every-
one has a computer machine available for this
work. Also, those with machines are using the
trial-and-crror process in most instances when
locating the proper range of variables with the
result that much machine time could be saved if
some insight were available as to the individual
effeets of the different variables on the motions.
This insight is best provided by analytical solu-
tions to the equutions of motions. There have
been many papers published concerning this prob-
lem. (See, for example, refs. 1, 2, and 3.) IHow-
ever, one thing common to these papers has been
the constant spin rate requirement. Other re-
quirements sometimes include constant mass and
inertin parameters or constant moment inputs.
Solutions are sometimes limited to angular rates
referred to a body-axis syvstem requiring trans-
formation and numerical integration to obtain
space-referenced attitude angles.

The present paper presents an approximation
method for determining the vacuum wmotion of
spinning syimetrieal rigid bodies with changing
spin rates and inertias including the effects ol time
varying thrust misalinement, mass unbalance, and
jot damping. Results are presented in the form
ol equations for space-relerenced Euler angles
and flight-path angles, and earth-referenced
vehicle-trajectory coordinates.  An  expression
for body-referenced attitude rates is included for
convenicnce.  The method consists of dividing
the problem into intervals during which the time-
dependent variables are assumed constant at their
mean interval value. Tn order to check this
procedure, solutions for various interval sizes are
compared with solutions obtained with numerical
methods. The method was developed under the
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limitations that body piteh and vaw attitudes are
restricted to “‘small angle’ oscillations and that
body moments of inertia about the pitch and yaw
axes are equal,

SYMBOLS

a arbitrary fitting constant
A, B C complex input coeflicients defined in
equation (13)

A B, fitting constants for moment inputs

Ay, o constants defined by cquations (18)

By, B, constants defined by equations (18)
B, B;

Oy, constants defined by equations (18)
(5 O

F magnitude of totul asyvmmetrical

force on vehicle
input coeflicients defined in equation

(13)

¥ mean value of F/(mV) within an
interval

g constant of gravitational acceleration

I I 1, moments ol inertia about X-, T-
and Z-axes, respectively

Iy, Iy products of inertia due to unbalance

I=1,=1,

J jet damping coeflicient, K//

J mean value of j over the interval

K pitchh and yaw jet damping factor,
I—m

K’ roll jet damping lactor

{ distance from body center of grav-

ity to motor nozzle exit measured
along \-axis
m mass of body
My, My, M, asvimmetrical moments about .\-,
V-, and Z-axes, respectively
angular veloeity about N-) }- and
Z-axes, respectively
Iz mean value ol p within an interval

»g,r

R,.R, R, vectors defined in equations (9)

T thrust

T mean value of 7/(mV) within the
mterval

{ time from beginning ol interval

V veloeity of body along flight path

A A orthogonal body-axis system (origin
at body center of gravity)

2,0, 2 orthogonal space-uxis syvstem (origin

arbitrary)

Loy Yoy 2o z-, y-, and z-axis system rotated
about y-axis to make z,-axis ver-
tical

a body angle of attack relerred to a
rolling body-axis system

a, body angle of attack referred to a
nonrolling body-axis systeimn

B hody angle of sideslip referred to a
rolling body-axis system

B, hody angle of sideslip referred to a

nonrolling hody-axis system
B=j+i(p—a)
Yo angle between u-, y-, and z-axis
system and z,, y,, and z, system
in zz-plune

T=v, 10y

Yo flight-path angle in pitch plane

v, flight-path angle in yaw plane

A vehicle total yaw angle, 8417y, radians
Ny, Nz angle between body principal X-axis

and X' (body relerence) axis
measured about ¥- and Z-axes,
respectively (see figs. 3 and 4)

¢,,:fpdt at ¢,

¥, 0, ¢ yaw, piteh, and roll orientation
angles of body X-, Y- and Z-uxes
with respect to &, ¥, and z space-
axis system (Euler angles)
¢’ angle between the total asymmetrical
force vector (ulways in the YZ-
planej and the —Z direction (see
fig. 1(b))
bt nean value of p/y/7 within the
interval

Subscripts:

0 value of quantity at beginning of
interval

f value of quantity at end of interval

maa maximum value of quantity

n mteger 1, 2, 3

A dot over a symbol indicates the first derivative
with respect to time; a double dot indicates the
second derivative with respect to time.

ANALYSIS

The modified Eulerian dynamie equations gov-
erning the rotational motions of a body about its
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principal axes are (sce vefs. 4 and 5):

Me=1xp—rqUy— 14 K'p
My=Iyvq—rp(l,—1x)+Kq
My = Iz —py(Ix— 1)~ Kr

Figure 1 illustrates the axis system used.

(1
(2)

[l
&

(b) Roll orientation of axes systems.

Fraure L.-—-Axes systems employed in analysis.

8=y =10,

SPINNING BODIES 3

If the body is assumed to have rotational mass
svimetry, I will be equal to 7y and the rolling
motion will not be affected by the pitching and
vawing motions. This allows equations (2) and
(3) 1o be solved independently of (1) for pre-
selected p histories.

By multiplyving equation (3) by ¢ and adding
the result to equation (2) with the rotational
symmetry assumption, the equation becomes

My iM= Hg-+ir)+ip(I— 1) (g

4+ K(g+ir) (4)

This equation can be referred from a volling
body-axis system to a space-uxis syvstem with the
transformation equations (ref. 6)

§=q cos ¢—rsin g
4’ 1 A1 L 0S8 [
¢4<(_0S 0) (g sin ¢-Fr cos ¢) »)
<i>:1)+f[x sin 8
Now, for small values of 8§ when cos =1 and
¢ sin 8<p (zero reference for 8 cun be changed

when necessary), equations (5) result in

A=8-Fip=(q+irye’ (6)

where
t
¢:f plt -+,
JO
Combining equations (4) and (6) vields

)\+)\<sz1) )

where

1/,+1\1y) i [[ o) o

L K_ I
A S

Equation (7) then governs the pitching and
yawing motions of rotationally svmmetric bodies
referred to a space-axis svstem.  The general form

of solution for this equation is

A==+ iy

_ (’“’vr I: f (j_,p _) ,,t:”:[ (W} 1M, {()L' [j+i1)<1—’—;>] '”}) (lt+>l,,e"%]r7t+>\o (R)
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The problem now is to {ind time functions for

My My
a
permit equation (8) to be evaluated but which also
adequately approximate the time histories of
these variables as they would exist in any practi-

cal problem.

the variables (_} n, »; )\\hu h not only

SPECIFIC SOLUTIONS

Solution with variables constant. —The solution 4
. . Iy M, M,
of cquation (7) when j, p, }; -1’-; and 75 are con- 0

stants is

Z
A=+ iy
in (Q‘)’ Frcure 2.—Tricyelic motion (after ref. 1).
=R;+Rye ! 1LR31‘”” (.9) .

where This N solution can be tho'ught (_)f as the sum of
: (90 three vectors: a nonrotating trim vector R, a

R\ N +(1I,+1\[,)e _ ' ply
¢ L’l’\‘——/ prU—Iv)—ilpj Ix _J veetor R, rotating at the rate A and a vector
! I R; rotating at the rate p. This type of motion is
(92) referred to as “tricyelie” in reference 1 and illus-
i trated in figure 2. The low-frequency veetor is
R,=- Ne +(J[r FiMpe L\ ob) called the g;)1‘0(7('5si0n vector, m(}d the high-fre-
) ’pl" J PU— L) —ilpj —l“'——:'— quency veetor is called the nutation veetor. Note
! Iip that jet damping attenuates only the R, vector.

Equation (9) may be more familiar with =0 and

MM e

A dTo—ilpj O Gith the real parts separated from the imaginary
parts as follows:
6—0 + sln Py -+--¢[: (\( 08 P I‘}"-])ﬁ—‘u" (0;2‘?;1){‘) §in &, 1—cos pt
P 1 "
_l_[] (“h » [\7_1>:|_J[7 005);42,,[ 1[{,) sing, [ . I'H"Ii (fqi“ » tllx):l (100)

My cos ¢,— M, sin ¢, e s
U—1y) [ sin ])H_]x

M, u)%d),,JTJI sm b. {7/ It 3
\mp—[ >]+ z Ry I:) s []—vospt-}-lx ((-nsp»}f—l)] (10b)

Exact solution with nonconstant spin rates.—Of the many attempts to satisfy cquation (8) by
substitution of various time functions for the variables, the one which permitted an exact solution

+

: "-—- [ ((U\])
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with nonconstant spin rates used the substitutions

=0 an

II“":(‘mlstum

The assunied straight line dependence of 1/p is
quite practical especially if the problem is divided
into time intervals. Although the constant-inertia-
ratio requirement can be circumvented (by the
method of the next section), the zero jet damping
limitation is considered serious except, of course,
for the case of nonthrusting vehicles.

Because a more general solution (presented in
the next seetion) was found for equation (8) and
in order to reduce confusion, the exact solution
referred to in the present section is presented in
appendix A along with all further discussion of
this solution.

Mean value solution, - In the application of this
solution, the problem is first divided into time
intervals.  The number and duration of these
intervals depends upon the accuracy desired and
will be discussed in the section entitled “Results
and Discussion.”  Within ecach of the time inter-
vals, the variables p, ply/[. and j are approxi-
mated by their mean value over that interval.

For example, consider the damping term in the

[3
exponentials of equation (8), namely, Jdt.
]

This integral is approximated by gt where 7 is the
mean value of j over the interval. By definition, this
is an exact approximation when the integration ex-

l/ - "
ilt=jt, )
[} N J f)

For times less than one complete interval, however,
the result is approximate. The accuracy of this
approximation can be increased to any desired
level by using shorter time intervals.  Thus, with
the substitutions

tends over the complete interval ( le,

a straightforward integration of the exponentials

of equation (8) can be accomplished.

Concerning the moment. inputs of equations
(7) and (8), M, and M should be approximated
by functions which can adequately describe the
variations of known time-dependent  moment
asvinmetries such as thrust asvmmetries, tip-off
asvimetries, and dynamic unbalance effects.
Remembering inertia must also be allowed to
vary with time, the following input forms are
assutmed for each interval:

AfoLiAf, 3
A M (RS CAE R
=1

—A+BtHCT (13)

When thrust or tip-off asyvmmetries are con-
sidered, Ay and A, are the actual pitching- and
vawing-moment  asymmetries  applied  to the
vehicle,

When dynamie unbalance effects are considered,
the montents Ay and M, are related to the perti-

nent variables as follows (rel. 4):

M,y +iMy=T (P =P+ v (DA-1¢)
il (p—aqr) sy (PP )] (140)
which, for the present purposes, reduces to
“[r‘{‘"4‘127]'2(—‘[\'2#‘?'r[.\’)"] z1)2('[*14\') (:77)'4, 'i7IZ>
(14b)

sinee the produets of inertia are related to angular
deviations of the principal axes as follows:

27+
tan 2gp= —22-
"1
and
9
<«f XYy
tan 29,= =
Nz [YA']X

Now, if 2 combination of asymmetries and un-
balance exist during the same interval, it may be
casier to fit cach asymmetry or unbalance to a
separate complex input term. For example, the
unbalance input p* (lj}'—l)(m-nwnz) may be
fitted to the term (£, 4161+ A+ Big*).  1f the
input. moments have large or rapid changes in
direction during an interval, however, it is more
satisfactory to combine the real components of
the various inputs separately from their imagimary

components.  Then, the total complex input is
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fitted to a combination of two or more input terms
as

QL+ M) = (0D (T4t + Bit?)

H0+H0G) (Tt + But?)

Now, when equations (8), (12), and

combined, equation (8) becomes

vy . hs - - -
A—r¢'®a [ {(,<pm»[[[ (‘l+l;t+("t2)(/jl'+z(p—wl!,h&
Ju Jo

H A w]} dt-=N, (15)
B 20
:<1rl tgg!

. (1__:+_ ] (zw it
BB
+°

B [( 1__+!3 )+'(

(13) are

By integration,

ks

]
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and
mz—f;_uil
A= xﬁm&{[m '%H q-n +_ )] L
. B tw—J

"'"‘[1_'_4' (L_l (1)’_ )]

1pB I B

I (/f_l' it l} (161)

111/3

where

B=j+i(J—a)

Equations (16) predict the approximate rotational
notions  (space  referenced) of spinning  sym-
metrical bodies with changing spin rates and
inertias ncluding the effects of time varving
thrust misalinements, mass unbalance, and jet
damping.  As in equation (9), the X solution is
tricyelie with a nonrotating trim vector, a vector
rotating at the rate w, and a vector rotating at
the mean spin rate p. By separating the real

(16x) and imaginary parts ol equation (16h), thesolution
may be more readily evaluated in the following form:
6’:(_{ Wl w-)-(i;;;m ﬁ{i]")"}‘( 'w+('i_ _<: i sin wt)+(0" (’y) cos pt—(,— ') sin pt4-C,
w -+ w’
8 _ o 2/;’,,;‘( o
+”Z=1 [y cos (Bt+ o)+ Aj sin (Pe+a,) || At + B12— ; ;i*([l— - =] Ay sin (pt+¢,)
» t -an
— A cos (])I+¢,.)][ 2+fﬁ_w.} ]} (172)
T (T Cat O T cos 1) . o _
= (=¢ 1J+(52®+(‘;2 sin &1) (450+C_J)_(:+72(OS wt 12+(0¢,—(73) sine pt-(g,— (') cos pt+C,
28, t 2B, A
2 { Lvos Bt taasin G [ 202D L i G
— A5 cos (T)t+¢,,‘)][:A,J—}—H,,t”——_"B"]l ]} (17h)
pﬁw)‘
where
A==t G—e) 6. (18)
i+ —w)*)
A=t HOAP—8) (18h)
Pl (p—w)?|
3
=043 (—B.Bot Bibiy) (18¢)
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. 3
o=t S (— ByBe— BBy

=l

(18d)

7 21
- _’"'[1;4_ . 2—elBe
n= ” A pip- w)?
;(' <Ay 2 r— g 5
B 2B (18¢)
P P Pl —w)?

[ 2B,

3 [ P .
('-l’*‘l/u_*“z ) —]g‘ [{'\+‘ _ - -
r pitEpp—w)?

n=1 /'

B, 9B, 2B.(P—a
+ - Bi— —I.."ﬂ_.—["(;/',_ w)_ 1} (181)
P Pp i p(p et
17 2 T i — o2
S )—w)*" I.}‘* (])fw)'l‘q‘ |2.}(,[)"w)|"

{18¢)

B A, (p—a) 4JB,(p—a)
LI - o

TG D T @ 2 @

(1sh)
B~ P, cos ¢,— 24 sin @) (181)
B;=plA; sin @, {21, cos @) (18p

Beeause body motions referved to a body-axis
system are sometimes desived, cquations (16a)

and (63 are combined to obtain for reference
. i . no20 - -
‘/i’l' :[“/‘,'5 r)—— A _+_2 :I(‘I:u'hy it
(1 S+3)
1 I 20 207 R
Fo | (AT Y (B -H-(':I (19a)
(2 )
or
gl @ ige e (191

FLIGHT-PATH ATTITUDE

Up to this point, all effort has been toward
determining the attitude of the body expressed
by the Euler angles 8 and ¢, Of greater impor-
tance to many investigations is the knowledge
of how the external forees and moments on the
bodyv affect its veloeity vector and space location.
The author’s interest in an analytical solution
to this phase of the general problem was stimulated
by the analvtical results ol reference 3. The
method of reference 3 will now be used to extend
the attitude solution of the paper to
expressions defining the veloeity veetor.

The force equation normal to the flight path

present

658651—63— -2

OF

SPINNING BODIES
in the piteh plane (fig. 3) is

Iu\")'/ﬂ" ' sina,— mg cos (ye—i ¥

4R cos a, ('()s( [ pdt +¢”,+,¢f) (20a)
[0

and in the vaw plane (fig. 4) s

m"n = T ain B4 F cos 8, sin ( f//)«/f+¢,,+¢")
(20b)

By restricting the results to angular changes
in velocity veetor due to external disturbances
other than gravity, the weight term of equation
(200) can be dropped.  Multiplying equation
(20b) by i, adding the result to equation (20a),
and considering only small angles yields  the
following:

m

T

(G L9 | g bimg) ey 01 i)
-t
l,' ‘I (J' it g, 1 4/) .
—}—m‘, ¢ ' 21)
where
6 ‘Y,\71 79

x spuce reference
axrs

/u/sbr[) dgr e ¢>0r¢’>

Horizontel
reference

g

Fraure 3. Piteh plane forees and angles. ¢

win {ff‘p g, t ¢'>

W0

Prncipal
X-axis

¥

Froure 1-  Yaw-plane forees and angles. 8-
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and
¢:

The form of solution for equation (21) is

oo
VJ ”}‘thf t T F t(J ;uit+4>,,+¢ ( J i
by — o WSO = o !
Yoty e f“ my >\+ ¢

ADMINISTRATION

_/35‘}‘74&

A4, (22)

Again, the mean value substitutions within the intervals are used. Lot
m[‘ ~T (23)
"nﬁ =F (24)

Substituting equations (16), (23), and (24) into equation (22) and integrating gives

e T L T B2
ipB(T+ip) B B
i l"@u
-Pf(lf~2£'+2"(' 20 )+’ . }+ Mg
B p Tiip

AR -PRNA
I'e

i

B 20
) __+_A)

B B
iw—)

——T't) {)\ —

(e — e T 4 (1=

2’ 207 24(
e (75 5) (7))
_ T = - 7
T _ (iU
ity o]

200 401 2(
PG e
Po\p B B (25)

oo

78

Equation (25) predicts the direction of the ve-
locity  veetor for vehicles having the angular
motions described by equations (16).  Note the
similarity of these two solutions (eqs. (16b) and
(25)). Both consist of a fixed vector, a vector
rotating at the mean roll rate, and a veetor ro-

. Pl
tating at the mean value ol l[ :

Again, it should be remembered that these
solutions are for small values of 8 and that flight-
path curvature due to gravity is disregarded.
An approximate change in flight-path angle due to
gravity is

,
» gt cos v, 7
Mgty = =T e T

The results of equutions (16) and (25) can be
combined to yield time histories ol angle of attack
and angle of sideslip as follows:

N

a,=f0—x,
B-»‘: —WWLW}

(26)

and beeause of the relationship
B’i';(!¥(l3\>}
a——f.sin (pt-+eé,) 1-a, cos (jit -

fae "
(b(l)
B=0, cos (pt+¢,) +a, sin (pt-+¢,)

(27)

Now, going on to the space-position solution, it
can be shown from figure 1 that
==} sin (79-1-7,',)
s,=1"cos (y,47v,) cos v, (28)
He=1"cos (y,4v,) sin 7,

The foree equation along the flight path for small
disturbances is
(29)
By considering small angles for « and g and re-
moving gravity effects equation (29) becoines
T _V
ml" Vv

T cos a cos B—my sin (y,+v,)=mV

(30)



VACUUM MOTIONS

Integrating this ecquation and combining with
equation {23) results in

Vet (31)

Now, this velocity expression can be substituted
into equations (28) with the assumption that »,
and v, are small angles, and the equations can be
expanded.  Since equations (28) and (31) were
obtained by neglecting the foree of gravity, the
term gt is added 10 the equation for 2, to get the
earth-referenced veloeity equations with gravity
effeets ineluded.

Ze=—17,6"" (v, cos y,+siny,) +gt
&=V, " (cos v, —v, 8in 7)) (32)
LR S T P = ’

Y=V ey, (cos v, —v,siny,)

Equations (32) are integrable and yield the
space loeation equations with gravity effects in-
cluded.
¥, and v, which are available from equation (25).

V,siny, = h
fe= = T T (e T T
7
. P | -
—V, cos 7,,J70(<“:/f+2 (t?
Vi,cosy, =
re=ur. ,+ = =1

T (33)

—V,sin 'y,',J 70("7—'”/1

Vo= o+ V, cos %J weT'u’t

— V', sin v, J vor, Tt
P

RESULTS AND DISCUSSION

The results ol this paper are primarily the
attitude solutions expressed by equations (16),
the flight-path direction expressed by equation
(25), and the space-location solution ol equations
(33).  All these solutions are complicated by the
large number of variables which affect the end
results.  In order to show some of the more im-
portant intervelationships of these variables,
others must be held constant.

ATTITUDE SOLUTION

With the attitude solution of equations (16),
the separate motion effects of the initial attitude

The result is given here as funetions of

923

SPINNING BODIES 9
A, and the initial attitude rate A, can readily be
demonstrated by making A -8B —0 and j=0
with the result that

A )

This solution is shown in figure 5{a) to be the sum
of a fixed vector and a rotating veetor.  Until
A, and A, are specified, however, it is not possible
to say whether a higher or lower spin rate or inertin
ratio will increase or decrease Ao the common
performance standard of spin stabilization.

Now, if the model 1s thrusting but with no
disturbance moments, jet damping normally
attenuates the motion and the plot of 8 against ¢
turns into a logarithmic spiral as shown in figure

5(h).

8
).\0
. ST
w
\ Ag= Ay /i
i
(a)
ipe /! §
2ol -/‘-
]
Ao
XO_ -y
Y
(b)

(1) j=0 (no jet damping).
(b) 770 (with jet damping).

Fravnre 5, Sample attitude solution with no moment

inputs (#F,4 i67, -0).
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Moment asymmetries. For the effects of mo-
ment asvonmetries the solution for X may be
simplified - by asstiming no residual motion (A,
= A, 0) and constant imputs (4 €01 Then
for ¢,—0, the solution becomes

N
APt ip @)l e

Expressions for maximum wobble ean be obtained
from this equation under the following conditions:
When w o ps, or, more accurately, when

- —jr Jt

) [l : e +_(F ;)] ~
N -2

2R ' -

then

& ’ / o2 .'
M N e Pl - 'ﬂ[\<k‘;)+<

ar 1, Tor nortuadly small j values (i.e., J/p<<l and
Jel),

N ONAME M
= Tap—6)
When @ 7, or, more precisely, when

R I] +l 7’1 [H tan 1(//“)]

then

ATKTEW?WW‘

)‘mvu'" - [ (3 2 ] 3\’
llllap—w)l VG- +(F)

L
2 2 - - —
_*_\“w +/ _*__(}—(_[/p)[llr!“(‘j«'@')
P
and, for normally small j values,

\ 2B
Uy [ll(w . 1-):)

Note that both A, expressions show that max-
imum wobble due to asymmetrieal moments is
proportional to the size of the moment and, for

normally small 7 values, is effectively inversely
proportional to the |)m(lu<'t of the mean roll -
ertia and the square of the mean spin rate over
the interval. It follows, therefore, that spin-rate
magnitudes inereasing with time (us well as larger
spin rates) will reduce wobble because of the re-
sulting larger value of mean spin rate over the
interval.

Lastly, for 7=, un expression [or maximum
wobble can be obtained under the reasonable
conditions that (j/p)<l and that (F—@) is a
“small angle.””  This expression is

(,‘,_(’ 1[( w-*/lH]
f%&ﬂ-wﬂ

! - “H f£.2.1 2
)\mur“ 11—;\“ (A[)' jl “[Z )

This solution indicates the divergent nature of
Amar for P& at small ji values. The divergence
is more apparent for j—0 with the result

t 9 )
)\/mu‘:Il—J A 41[)"‘ 1 A‘lZH

Although the quantity (p—w) is never exactly
equal to zero in a practical problem, the theo-
retical possibility of 7= 7y also vesults in the sim-
ple divergence equation just given (for normally
small values of 7). These divergence solutions
reveal that wobble buildup is proportional to the
input moment disturbances and to the time ve-
quired for passing through the resonant condition
(Pp~w) and inversely proportional to pitch or yaw
inertin and mean spin rate.

Unbalance. It is difficult to show clearly the
effects of unbalance on the motion of a body hav-
ing a nonconstant spin rate because the input
moments (eq. (14h)) are variable.  Thus, the
quantities BB and " or .1, and B, must take on
values other than zero which precludes o simpli-
fied version of the general solution. However, by
% values temporarily,
equations (9) and (14h) can be combined (still re-
taining the conditions A=A, 0, B (=0, and
b, — 0y with the result

considering fixed p and
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When []“v -

/

J . 77"20{'7’”21_ . -,
VG Y+

and, for normally small values of 4,

Iv AHHI}‘ -

2/ . .
)\///ll,f = [‘\' (/0 1Ny
. Iy
When "1
/-
A ﬁ”m»fﬁ Nz
mar ! / 2

and, for normally small values of j,

)\mu.r =2 3\ W}'2+ﬂ22

When 1[‘*1 .

Npar—

These results are for constant values of p and [1\
with no residual motions.  Note that wobble due
to unbaluiee is independent of spin rate except
through the jet damping terms which normally
have only a very small effect. Thus, wobble due
to unbalance eannot be controlled by spinning as
aun, for example, the wobble resulting from inttial
attitude rates or thrust misalinement.
APPLICATION

The analytical expressions for X and v given in
the present paper have been programed for use
IBM 7000 electronic data processing
Sample problems were composed and

with an
machine.
this program used to generate their solutions.
The numerieal solutions to these problems were
also obtained with the numerical integration
method reported in reference 3 for the purpose of
comparison with approximate solutions.

It should be mentioned that the values for p,

@, T, and F used in the approximate solutions
were bused on assumed exponential histories of

the variables within the interval { i.e., for example,

SPINNING BODIES 11

- ), . . .

L Pr P2\ Although this assumption of exponen-
log, 1!

’
tinl dependence of the variables is inherently more
accurate, almost identical results (not shown)
were obtained with the approximate method by
assuming linear histories of the variables within
ot 1%)

)

wich interval (i.(‘., P

The first application was to simulate the motions
of a rocket model which was the last stage of a
multistage rocket system.  The model can be
thought of as a cylinder about 1% feet in diameter
and 3% feet in length having a ratio of fuel weight
{o total weight of 1/2.  An angular thrust asyni-
metry of 0.001 radian in both the pitch and yaw
planes provided a continuous disturbance to the
motion. A separate spin motor was assumed to
increase model spin rate during the problem from
5 to O radians per second. The approximate
solution was computed with two intervals and
with ten intervals, each with and without jet
dumping.  Problem constants and initial condi-
tions are listed in appendix B, Results are shown
in figures 6 to N,

Figure 6(a) shows the approximate 6 and
histories obtained with the two-interval solution
(no jet damping) and their comparison with the
numerical solution.  In general, this comparison
indicates a good approximation of the numerieal
solution except for the first negative peaks ol
ench curve where the approximate solution under-
estinutes the aetual values.  The phase difference
between the approximate and numerical solutions
is to be expected and is usually of little importance.
In this respect, both ends of all intervals are
exactly in phase, the greatest difference oceurring
halfway through each interval.  The two-interval
solution for flight-path direction is shown in figure
6(a) along with the numerical solution. Here,
ihe comparison appears not. quite so good as the
atutude but satislactory for most
PUFPO=es.

In order to illustrate the accuracy obtained
with many intervals, the ten-interval solution of
figure 6(b) was computed. Note the improve-
ment in the A and v solutions as compared with
the two-interval results.

solution,
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! Two interval
B ¢ Numerical ———
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deg 0
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Time, sec
(1) ‘Two-interval approximation.

Frovre 6. Approximate and numerical solutions of first samnple probiem,  j -0,
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(b) Ten-interval approximation.

Ficure 6. - Concluded.
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Thus far, problem cases have been restricted to
zero jet damping beeause the prograne used to
obtain the numerieal solutions does not include
jet-damping effects. However, jet=damping ¢f-
feets can be quite Targe as illustrated in figure 7.
This figure presents the ten-interval solution with
and without jet damping.  Note the large attenu-
ation cffeet of jet damping on the low-frequency
(precessionj mode and the near absence of this
effeet on the high-frequeney mode. This large
daniping effect is not unusual and can even be
called (ypieal.  Tts presence s lortunate sinee
no other forees are naturally available to damp
the miotion.

It is well docunmented that bodies having Jy—
Iy -1, eannot be spin stabilized. However, the
motions of axisvimetrie bodies passing through
this condition are not well known. For this
reasott, the second type of problem for simulation
was selected to reveal the effects of passing through

. . Iy \ -
mertial resonance (1‘ ':1)~ This problem as-

sutied a variable 7y, a constant [/, and no roll
inputs. Only the X solution was computed for
purposes ol simplicity. The problem was com-
puted with one tnterval, two intervals, and three
intersals, in all eases with no jet damping.  The
necessary  constants and initial - conditions  ure
presented in appendix B Results are presented
in figure N which also shows the numerieal solution
for comparison purposes.  Figure 8 illustrates the
one-interval solution of this problem to be inade-
quate.  The (wo-interval solution is much in-
proved and reveals the trends of the numerical
However, for an acceurate amplitude
compartson,  the  (hree-interval  solution s
indicated.

Intervals. Solutions have been previously de-
seribed as one interval, two interval, and so forth,
with no explanation of why or how the number of
intervals was seleeted.  As previously mentioned,
a two-interval solution (for example) means that
the problem is computed in (wo intervals, usually
soas to result inabout the same pereentage changes
of the within cach interval.  Then,
closed solutions Tor the first interval are obtained
with equations (16) and (25) along with the initial
conditions of the problen.  In order to compute
the solutions at any time of the second interval,

solution.

variables

AERONAUTICS AND SPACE ADMINISTRATION

however, the final values of interval one must be
caleulated and used as initial conditions Tor the
second mterval,

While the number of computations increases
with the number of intervals used, the accuracy of
the results increases  thereby.  The  optimumn
nwmber of intervals; then, depends upon  the
computing facilities  available, the  degree  of
aceuracy desired, and the total pereentage change
of variables throughout the problem. In this
respect, the author has tentatively settled on
Iy
/
do not vary more than about 15 pereent for
“aceurate” results or more than about 30 pereent
for approximate results.  These percentages are
based on a limited amount of experience.  Per-
centages for the sample problems are given in
appendix B,

Computing time. —C'omputing times for sample
problemm number one of appendix B were obtained
for both the approximate and the numerical or
step-by-step solutions.  These solutions were gen-
erated by an IBM 7090 electronie data processing
machine and  required  certain - compatibility
chunges since both programs were originally set
up for the IBM 704 electronic data processing
machittie,

Both programs required about 26 seconds read-
i time. Ixeluding read-in time, the approxinate
method (10-interval solution) had u ratio of ma-
chine time to problem time of about 0.93 and the
Reducing
the number of intervals used in the approximate

using intervals in which the values of poor p

numerical method a ratio of about 4.5,

solution would decrease its ratio only a small
armount.

Other Tactors involved in a computling time
comparison are as follows: First, the numerieal
method is programed to vield output quantities
not included in the output of the approximate
method. Tt is estimated that the elimination of
this part of the program would amount to about
% reduction in computing time for the numerienl
method.  Second, the above rutios are for defining
the output every 0.1 second and could be reduced
proportionally for the approximate method by
using fewer output times.  Phe numerieal method
would not benefit in this respect.
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Freore 7. -Effeets of jet damping in first sample problem. Teu-interval solutions.
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Figure 8.—Comparison of approximate and numerieal solutions of second sample problem showing motions of a body

. I -
passing through inertial resonance (’fil) at {==10. j=0.



VACUUM MOTIONS OF SPINNING BODIES

] N E T R o r
o L ‘ B - N
Two interval —— ; i ! \ ~
! ‘Numerlcal ——— ‘.f ]p\ {I\ J’ \\ ‘ / \i ’\
! [ t ra '\ / ‘ | | \ ! i
8, ~ r / ‘ ]
deg | , ‘/\; [ /k}\\ 0 AN, ‘/\ ’/\\ ;’/\\ /\ \ 1\\_
‘v v \V VANV \/ \ WAV
N Lo \ MRV | /AL Y
‘ ‘ \ ! \
\ 1 J \/ | VU WA
2 o | / \/ \\U ¥ \
1 ]
3 I ’ - | ‘f ] ' | 1 t
2 } : } ~ /\ /’\ 'f\‘ /l‘\ A
i N \ AN I
u/\ xA j 1 {f\j/\ | '[k';\\: A Py
\J\/\/\/\\/\Auj Vi \\\J/\ ) i\f“//\
-l t | i . i , | '\’ ! ] \ [ %\ j \ . -
(b) | fo \ \ oy f
. | AU VY
‘ \
| | |
3 ; } ﬁ ‘ i } | ‘ 1 [ "
i Three interval —— ‘ | !
| ‘\ ‘Numerlcal - , | . ) { ! ~ :
e- AR
dego/\/?\/\/“\ N JAV\/\
VTV RN VALY
_ J ‘ _ v LY
| J
- i P
3 l
| | o
2 ‘ i ‘ \ i : {
| ‘ | .
. | 1 . V . ‘i B . i “ / . /'\\
, ; 1 ; ‘ /, \
AA/\/\AJ«\.A/\/\
TNV VY VY
-l 1 | ! = 3
© | } l [ l [ : ‘
-2 P . s | { | J l i i
0 2 4 6 8 10 12
Time, sec

(b) Two-interval approximation.
(¢) Three-interval approximation.

Fiavre 8.—Concluded.
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CONCLUDING REMARKS

A method for approximating the vacuum mo-
tions of symmetrical rigid bodies with nonconstant
spin rates and inertias has been developed. The
analysis includes the effects of time varying thrust
misalinements, mass unbalanee, and jet damping.
The method was derived for bodies having equal
nroments of inertia about their pitch and yaw axes
and is based on body pitch and yaw attitudes being
limited to “small angle” oscillations.

Results have been presented in the form of equa-
tions for space-referenced Euler angles, flight-path

angles, and earth-referenced  vehicle-trajectory
coordinates.  Equations for determining muaxi-

mum wobble have been developed for certain input

conditions.  Also, equutions for body-referenced

AERONAUTICS AND SPACE ADMINISTRATION
attitude rates, angle of attack, and angle of sideslip
are included for convenience.

The generul solutions give insight into the indi-
vidual effects of the variables and, in many cases,
offer a quick means for obtaining approximate
solutions.  Although the method is somewhat
lengthy for accurate hand computation in most
cases, it is readily programed for automatic com-
puter solutions.

The method has been shown to compare c¢losely
with numerical solutions of two sample problems.
The sample problems also illustrated the relatively
lurge effect of pitch and yaw jet damping on body
motions.

LaxaLey Resegarcu CENTER,
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
La~xarey Srarion, Hameron, Va., April 24, 1961,

APPENDIX A

EXACT SOLUTION WITH

Combining equations (8), (11), and (13) results

in the solution
P (I, a
)\z)\o+(f"°~{:1’(_l—}—at)e a (1)' o (rat
— =B "= +[B (1 +at)?

D,
+C"(14at)®*+ D' (1 +at)*Jp17 log., (14af) }

where

A B O
R o at@
vy G )
20 ('
_ (l";_ 7(7173‘ o , (}1
. . (P Ix . N Iy
2t (\a‘) (\’“7) 3t (Z) (‘” ,

NONCONSTANT SPIN RATES
A B C
, .
i 7
[l%ﬂf (%") (1—%)] Ra+1p,)
B 20
. a @ )
[2+; (1(’7) ( 1 —-%‘)] (Ba-+ip,)
C
D=

a? , ol
[:s 4 (%) <1 ~17*>] (4a+ip,)

This result displays the spiral nature of the
8, ¥ motion for nonconstant spin rates. Spin rates
decreasing with time result in spiral motions of
increasing magnitude and spin rates increasing
with time act to reduce the magnitude of the
6, ¥ motion.
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APPENDIX B

SAMPLE PROBLEM INFORMATION

PROBLEM 1

Problem length, see. oo ... 20
ht b}

Mass, slugs_ oo Lo 20— ‘T+ TRUOIZ

Thrust, Ib_ 5, 000 -~ 50t
Pitch and yaw inertia, slug-ft>_ .. ____ 25 6—0. H3t
Roll inertia, slug-ft.____ . . .. 3. 93 —0. 0965¢
Roll input moment, ft-lb_______________________ 0. 572
Piteh input moment, ft-lb_ 0. 001(5, 000 —50) (2+-0. 025¢0)
Yaw input moment, ft-lb__ 0. 001(5, 000 - 50¢) (2-+0. 025¢)

Thrust arm, ft__ . o= 240, 025¢
Initial flight-path velocity, ftfsec. ... 5, 000
Initial roll angle, radians_________ ... R 0
Initial piteh angle, radians__. ... ... ... 0.05
Tnitial yaw angle, radians__ ... _.___ 0. 04
Initial roll rate, radiansfsec..____._. e H
Initial pitch rate, radiansfsec_ . .. 0. 015
Initial yaw rate, radians/sec_ . ____ . .. _____ 0. 02
Initial flight-path angle in vertical plane, radians__ 0. 02

Initial flight-path angle in horizontal plane, radians 0. 01
Two-interval solution:

Intervals_ ... . ____.._ 0=(=12, 12-51=20
Maximum change of p within the interval,
pereenl . ___ oo . 41

. Iy .. .
Maximum change of p —[“ within the interval,

pereent ; o . 33

Ten-interval solution:
Imtervals________. _ . 2-see intervals suceessively
from 0 to 20 se¢

Maximum change of p within the interval, per-

PROBLEM 2

Problem length, see ___________ . _____ . 20
Piteh and yaw inertia, slug-ft* .~ __. .. .____ 25
Roll inertia, slug-ft2_______ . ____ Lo 31.25--0.6973¢
Roll moment input, ft-1b_ .. .. o0 ..o .. 0
. . 1
Pitech moment input, ft-lb - _______ . -5
Yaw moment input, ft-lb_. .. _. R, 0
Initial roll angle, radians .- . _____ oo 0
Initial piteh angle, radians . e 0
Tnitial yaw angle, radians . 0
Initial roll rate, radians/sec___ . I R 5
Initial piteh rate, radians/see. . . L. 0
Initial yaw rate, radians/see_ o oo 0
Initial flight-path angle, vertical plane . ___ 0
Initial flight-path angle, horizontal plane . . 0
One-interval solution:

Maximum change of p within the interval,

percent . e 0
Iv 0. .

Maximum change of p [‘\ within the interval,

pereent. Lo L L oo 36
Two-interval solution:

Tntervals oo .. 0= (<12, 12=¢=20

Maximum change of p within the interval,
pereenl oo 0

. Iy ... .

Maximum change of p [‘\— within the interval,

percent L . 20

Three-interval solution:
Intervals oo __ 02167, 6.7=1=133, 1335120
Maximum change of p within the interval,

eent___ . T - e 6 pereetd - .- 0
Maximutn change of p ,]“ﬁ within the interval, Maximum change of p le within the interval,
pereent .. ___ el oo ) , e 4. 6 percent . oo e 14
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